好心情说说吧,你身边的情绪管理专家!

好心情说说专题汇总 心情不好怎么办

励志的句子

【#范文大全# #正数和负数的课件#】您需要什么主题的内容小编为您准备了一份“正数和负数的课件”。教案课件是老师上课中非常关键的一个工具,因此需要老师精心设计好教案课件。教案是教师在教学过程中具体操作的依据。希望这篇文章能启发您对这个问题的思考!

正数和负数的课件 篇1

教学目标:

1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);

2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.

通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

:“零”为什么既不是正数也不是负数呢?

学生思考讨论,借助举例说明.

参考例子:用正数、负数和零表示零上温度、零下温度和零度.

思考 “0”在实际问题中有什么意义?

归纳 “0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.

:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?

【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

【例2】(2)某年,下列国家的商品进出口总额比上年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家这一年商品进出口总额的增长率.

解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.

1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

2.让学生再举出一些常见的具有相反意义的量.

3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:

中国减少866,印度增长72,

韩国减少130,新西兰增长434,

泰国减少3247, 孟加拉减少88.

(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;

(2)如何表示森林面积减少量,所得结果与增长量有什么关系?

(3)哪个国家森林面积减少最多?

(4)通过对这些数据的分析,你想到了什么?

(课本P6)用正数和负数表示加工允许误差.

问题:1.直径为30.032 mm和直径为29.97 mm的零件是否合格?

2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.

1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5 ℃,则乙冷库的温度是 .

2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?

3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:

根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

类比例题,要求学生注意书写格式,体会正负数的应用.

2.能把给出的有理数按要求分类.

3.了解0在有理数分类中的作用.

讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

议一议 你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.

说明 我们把所有的这些数统称为有理数.

试一试 你能对以上各种类型的数作出一张分类表吗?

做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.

把所有正数组成的集合,叫做正数集合.

试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.

【例1】 把下列各数填入相应的集合内:

,3.1416,0,,- ,-0.23456,10%,10.1,0.67,-89

【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?

由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.

下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

(2)分数集合{};

(3)负分数集合{ };

(4)非负数集合{ };

(5)有理数集合{ }.

3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?

教学目标:

1.掌握数轴三要素,能正确画出数轴.

2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.

师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.

【点拨】(1)引导学生学会画数轴.

第二步:规定从原点向右的方向为正(左边为负方向).

第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.

对比思考 原点相当于什么;正方向与什么一致;单位长度又是什么?

(2)有了以上基础,我们可以来试着定义数轴:

规定了原点、正方向和单位长度的直线叫数轴.

做一做 学生自己练习画出数轴.

试一试 你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?

讨论 若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?

小结 整数在数轴上都能找到点表示吗?分数呢?

可见,所有的 都可以用数轴上的点表示; 都在原点的左边, 都在原点的右边.

【例1】 下列所画数轴对不对?如果不对,指出错在哪里?

【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.

【例3】下列语句:

①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有( )

【例4】在数轴上表示-2 和1,并根据数轴指出所有大于-2 而小于1 的整数.

【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为cm的线段AB,则线段AB盖住的整点有( )

数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.

1.规定了 、 、的直线叫做数轴,所有的有理数都可从用上的点来表示.

2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .

3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是( )

5.数轴上表示5和-5的点离开原点的距离是 ,但它们分别表示 .

6.与原点距离为3.5个单位长度的点有2个,它们分别是 和 .

7.画出一条数轴,并把下列数表示在数轴上:

+2,-3,0.5,0,-4.5,4,3.

8.在数轴上与-1相距3个单位长度的点有 个,为 ;长为3个单位长度的木条放在数轴上,最多能覆盖 个整数点.

教学目标:

1.借助数轴了解相反数的概念,知道互为相反数的位置关系.

2.给一个数,能求出它的相反数.

活动 请一个学生到讲台前面对大家,向前走5步,向后走5步.

交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?

1.观察下列数:6和-6,2 和-2 ,7和-7, 和- ,并把它们在数轴上标出.

想一想 (1)上述各对数有什么特点?

(2)表示这四对数的点在数轴上有什么特点?

(3)你能够写出具有上述特点的n组数吗?

观察 像这样只有符号不同的两个数叫相反数.

互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.

总结 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.

2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.

(1)-5.8是 的相反数, 的相反数是-(+3),a的相反数是 ;a-b的相反数是 ,0的相反数是 .

(2)正数的相反数是 ,负数的相反数是 , 的相反数是它本身.

①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.

【例3】 化简下列各符号:

(1)-; (2)+{-};

(3)-{-{-…-(-6)}…}(共n个负号).

【归纳】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.

【例4】 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?

【归纳】 (1)相反数的概念及表示方法.

(2)相反数的代数意义和几何意义.

2.分别写出下列各数的相反数,并把它们在数轴上表示出来.

5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是 .

6.若a与a-2互为相反数,则a的相反数是 .

7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“

正数和负数的课件 篇2

2. 技能能力目标:培养学生观察、分析、概括的逻辑思维能力和解决实际问题的能力。培养创新意识和精神、培养学生合作意识。

教材分析与处理、学情分析。

本节课是在学生学习了正数,即在正整数、正分数、零及这些数的运算的基础上,根据七年级学生年龄特点和心理特征即学生具有很强的感性认知基础,对一些具体的实践活动十分感兴趣。活泼好动,思维敏捷,表现欲强,但思考问题不全面等。采用探索引导式的学习方式。

难点:如何控制和提高学生的思维,在教学中把握主动性,培养学生各方面的能力。

教学设计及依据:

借助多媒体辅助手段,创设问题情境,引导学生观察、分析、组织讨论、合作交流,启发学生积极思维,不断探索后汇报研究成果,行到结论后进行总结,及时进行反馈应用和反思式总结。依据是《新课标》,学生是学习的主人,而教师在学生学习中只是组织者、引导者,培养学生学会学习,从学生现有生活经验的基础上,让学生感知知识的过程,使学生人人都能获得必要的数学,人人都获得有用的数学,不同的人获得不同的发展。

本节课中,首先呈现给学生的是两幅冬日雪景动画画面。

教师:同学们从这两幅动画中感觉到的是什么?谁能告诉我今天气温大约是多少度?动画里的温度大约是多少?能不能用我们所学过的数表示吗?

教师:正因为不能,为了解决这一问题,我们来学一些新数,从而引入新课题.

这两幅画符合学生的年龄特点,激发学生浓厚的学习兴起,给新知识的引入提供了一个丰富多彩的空间.

教师:像零下10°C我们可以记着“-10°C”读做“负的”.请举例说出生活中带负号的数

列举生活中事例,让学生感受到数学来源于生活区,我们身边的一切离不开数学,

教师:(屏幕显示)像5, 2, 2.01 1/2…这样的数叫做正数它们都大于零.

在正数前面加上“-”号的数叫做负数,如-10,-3…

0既不是正数,也不是负数.

教师:在知识竞赛中,如果用+10表示加10分,那么扣20分怎样表示? 某人转动盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示? 在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记做+0.02克,那么-0.03克表示什么?

①河道中的水位比正常水位低0.2米记做—0.2米,那么比正常水位( )0.3米记做( )

②如果上升3米记做+3,那么( )6米记做-6米,不升不降记做( )

③如果+20‰表示( )20‰,那么—6‰表示减少( ).

④如果—20.50元表示( )20.50元,那么+100.57元表示盈利100.57元.

⑤如果节约20千瓦,那么( )10千/时电记做—10千瓦?

我校升旗仪式选拔队员,按规定女队员的标准为155cm,高于标准身高记为正,低度于标准身高记为负,现有参选队员共5人,量得他们的身高后,分别为—7cm、—5cm、—3cm、—1cm、6cm.若实际选拔女仪仗队员标准身高为150cm到160cm,那么上述5人中有几个人可以入选?

教师:哪一位同学来谈你的看法?学生们有补充,和持反对意见的可以用不同的手势表答,并根据实际情况分别给各组打分.

教师:现在请各组上来两位同学现场演示一下,各同学写出自己的`身高,请一位同学挑选她们.

把主动交给学生,更能调动积极性和培养学生的能力.

通过本节课的教学,我对新教材有了更深刻的认识,不论从教学素材到知识结构,都更加符合学生的年龄特征及认知结构.在教学中应着重突出学生的自主、探究式的学习,通过交流、合作、研究、探讨,才能收到好的教学效果.

正数和负数的课件 篇3

1.1正数和负数

教学目标

1.了解正数和负数的产生过程以及数学与实际生活的联系;

2.理解正数和负数的意义,会判断一个数是正数还是负数;(重点)

3.理解数0表示的量的意义;

4.能用正数、负数表示生活中具有相反意义的量.(难点)

教学过程

一、情境导入

今年年初,一股北方的冷空气大规模地向南侵袭我国,造成大范围急剧降温,部分地区降温幅度超过10℃,南方有的地区的温度达到-1℃,北方有的地区甚至达-25℃,给人们生活带来了极大的不便.

这里出现了一种新数——负数,负数有什么特点?你知道它们表示的实际意义吗?

二、合作探究

探究点一:正、负数的认识

【类型一】 区分正数和负数

例1 下列各数哪些是正数?哪些是负数?

-1,2.5,+ eq f(4,3) ,0,-3.14,120,-1.732,- eq f(2,7) 中,正数是______________;负数是______________.

解析:区分正数和负数要严格按照正、负数的概念,注意0既不是正数也不是负数.

解:在-1,2.5,+ eq f(4,3) ,0,-3.14,120,-1.732,- eq f(2,7) 中,负数有:-1,-3.14,-1.732,- eq f(2,7) ,正数有:2.5,+ eq f(4,3) ,120,0既不是正数也不是负数.故答案为:2.5,+ eq f(4,3) ,120;-1,-3.14,-1.732,- eq f(2,7) .

方法总结:对于正数和负数不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数,要看其本质是正数还是负数.0既不是正数也不是负数,后面会学到+(-3)不是正数,-(-2)不是负数.

【类型二】 对数“0”的理解

例2 下列对“0”的说法正确的个数是()

①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数.

A.3 B.4 C.5 D.0

解析:0除了表示“无”的意义,还表示其他的意义,所以②不正确;0既不是正数也不是负数,所以④不正确;其他的都正确.故选A.

方法总结:“0”的意义不要单纯地认为表示“没有”的含义,其实“0”表示的意义非常广泛,比如:冰水混合物的温度就是0℃,0是正、负数的分界点等.

探究点二:具有相反意义的量

【类型一】 会用正、负数表示具有相反意义的量

正数和负数的课件 篇4

正数和负数

(第一课时)

一、教学目标

1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

2、能区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

二、教学重点、难点

1、正确区分两种不同意义的量。

2、两种相反意义的量

三、教学过程

先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.

材料:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高米,体重千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%?

问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?(学生活动:思考,交流。)

总结:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?

(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流,从而引入了负数:一种前面带有“-”的新数。问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?(这阶段主要是让学生学会正数和负数的表示.)

让学生带着这些问题看书自学,然后师生交流.

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含

两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数

量,而且是同类的量.

问题4:请同学们举出用正数和负数表示的例子.

问题5:你是怎样理解“正整数”、“负整数”、“正分数”和“负分数”的呢?

请举例说明.

四、课堂练习:教科书第5页练习

五、课堂小结:

围绕下面两点,以师生共同交流的方式进行:

1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范

围就扩大了;

2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以

前学过的0以外的数前面加“-”。

六、作业

教科书第7页习题第1,2,4,5(第3题作为下节课的思考题。)

七、教学后记:

正数和负数

(第二课时)

一、教学目标:

1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)

3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发

学习数学的兴趣。

二、教学重点、难点:

1、正数、负数概念的理解。

2、了解和表示向指定方向变化的量。

三、教学过程:

1、知识回顾与深化

(1)、回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了

区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这

就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负

数的数呢?

问题1:有没有一种既不是正数又不是负数的数呢?(学生思考并讨论)

(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易

理解,可视学生的讨论情况作些启发和引导。)

例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度

用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度

是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于

零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?

问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?

“数0既不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除

了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理数概念的建立都有帮助。

(举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.)

分析问题,决问题

问题2:教科书第6页例题

说明是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表

示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以

重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

类似的例子很多,如:

水位上升-3m,实际表示什么意思呢?

收人增加-10%,实际表示什么意思呢?等等。

三:巩固练习:教科书第6页练习

四:阅读思考:教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论

交流

五:小结与作业

六:课堂小结:问题的形式,要求学生思考交流:

1、引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

2、怎样用正负数表示具有相反意义的量?

(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指

定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变

化的量规定为负数.)

七、作业、教科书第7页习题第3,6,7,8题

教学后记:

正数和负数的课件 篇5

为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

对于数的发展(也即数的扩充),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与

5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是意义相反的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数负数.

我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个+号,比如在5的前面添加一个+号就成了+5,把 +5称为一个正数,读作正5.

在正数的前面添加一个-号,比如在5的前面添加一个-号,就成了-5,所有按这种形式构成的数统称为负数.-5读作负5,-5000读作负5000.

于是收入5000元可以记作5000元,也可以记作+5000元,同时支出5000元就可以记作-5000元了.这样具有相反意义的两个数量就有了不同的表达方式.

利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些具有相反意义的量.再如,某个机器零件的实际尺寸比设计尺寸大0.5 mm就可以表示成0.5mm,或+0.5mm;如果另一个机器零件的实际尺寸比设计尺寸小0.5 mm,那么就可以表示成-0.5 mm了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作+2,把乙队的净胜球数记作-2.

借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地硬造出来的一种新数.

例1 博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

思路分析:收入与支出是一对具有相反意义的量,可以用正数或负数来表示.一般来说,把收入4800元 记作+4800元,而把与之具有相反意义的量支出1600元记作-1600元.

特别提醒:通常具有增加、上升、零上、海平面以上、盈余、上涨、超出等意义的数量,都用正数来表示;而与之相对的、具有减少、下降、零下、海平面以下、亏损、下跌、不足等意义的数量则用负数来表示.

再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

例2 周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表: 单位:元

试在表中填写周二到周五该股票的收盘价.

思路分析:以周二为例,表中数据+0.16所表示的实际意义是周二该股票的开盘价比周一的收盘价高出了0.16元;而表中数据-0.23则表示周二该股票收盘时的收盘价比当天的开盘价降低了0.23元.

因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

例3 甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

试计算甲、乙、丙三个队各自的总净胜球数.

思路分析:由表中数据可知:甲队主场以3∶2赢乙队,甲队有1个净胜球;甲队客场又以3∶2赢乙队,又增加了1个净胜球.甲队与乙队的两场比赛中甲队净胜球的总数为2.

甲队与丙队的两场球,甲主场以2∶2与丙队握手言和,甲队净胜球数为0;甲客场以1∶3负给了丙队,这场球甲队的净胜球数为-2.甲队与丙队的两场比赛中甲队净胜球数为-2.

总之,甲队与乙队两场比赛的净胜球数为2,与丙队的两场比赛净胜球数为-2;这样甲队总净胜球数为零. 相信同学们根据上面的分析,自己也能说出乙队总净胜球数为1,丙队总净胜球数为-1.老师可以让学生来试试说说看.

特别提醒:股票的涨跌、球赛的胜负都是当今日常生活中经常遇到的实际问题,作为当代中学生应该主动去接触或了解一些与之相关的实际问题,以丰富学生的生活阅历.同时也充分说明数学本身就是生活的一部分,要尽可能地调动学生的积极性,把我们所学的数学用到实际生活中去.

例4 春季某河流的河水因春雨先上涨了15cm,随后又下降了15cm.请你用合适的方法来表示这条河流河水的变化情况.

思路分析:从上面的叙述可见河水的水位是先上涨了,随后又下降了,水位最终又回到了原来的位置.也就是说最终水位的改变量是零,或者说水位的总变化量是零.

与最初的水位相比先上涨的15cm,可以记作+15cm,而随后又下降了15cm,可以记作-15cm,这样水位又回到了原来最初的位置, 水位的总变化量是零,即这个变化量为(+15cm )+(-15cm )= 0cm.

特别提醒:在表示具有相反意义的量时,如果某个量经两次或多次变化后又回到了最初状态,就可以用0来表示总变化量;或者说这个量的最终变化量是零.

对于初一的学生来说,零的内涵极其丰富,因此需要特别关注,在以后讨论有理数的相反数、绝对值、有理数的运算时,需要提醒学生重视零的一些性质,并关注零在这些概念或运算中所扮演的角色.

培养良好的阅读习惯和提高阅读能力,是数学教学过程中需要引起重视的一个重要方面.教学中,我们发现学生绝对不会做的题目很少,但由于没有把问题看懂而造成的不会做的题目却相对较多.一旦老师帮助学生把问题弄明白是怎么一回事之后,学生往往都会说这题其实不难,我也会做,只是没有认真读题罢了.

怎样才能在尽可能短的时间内让学生有效获取题目呈现给我们的信息,做高效的阅读者?这是需要教师认真考虑的问题。教师对阅读习惯的培养和阅读能力的提高应该投入充足时间,而且一定要持之以恒.

教科书是学生学习时最重要的学习材料,但是很多学生却把教科书放到一边,到处去购买一些价值并不高的参考资料,不认真去挖掘教科书蕴含的丰富营养.这些做法或倾向也是需要教师有意识地去调整的,如果教师能从一开始就引导学生有意识地、自觉地养成阅读教科书的好习惯,养成认真阅读数学问题的好习惯,那么学生理解能力的提高、学习能力的提升都会受益非浅.

正数和负数的课件 篇6

单元教学内容

1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系。

引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念。

2.通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴。数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:

(1)数轴能反映出数形之间的对应关系。

(2)数轴能反映数的性质。

(3)数轴能解释数的某些概念,如相反数、绝对值、近似数。

(4)数轴可使有理数大小的比较形象化。

3.对于相反数的概念,从数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等来说明相反数的几何意义,同时补充零的相反数是零作为相反数意义的一部分。

4.正确理解绝对值的概念是难点。

根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:

(1)任何有理数都有唯一的绝对值。

(2)有理数的绝对值是一个非负数,即最小的绝对值是零。

(3)两个互为相反数的绝对值相等,即│a│=│-a│。

(4)任何有理数都不大于它的绝对值,即│a│a,│a│-a.

(5)若│a│=│b│,则a=b,或a=-b或a=b=0.

三维目标

1.知识与技能

(1)了解正数、负数的实际意义,会判断一个数是正数还是负数。

(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解。

(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值。

(4)会利用数轴和绝对值比较有理数的大小。

2.过程与方法

经过探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等数学方法。

3.情感态度与价值观

使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。

重、难点与关键

1.重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值。

2.难点:准确理解负数、绝对值等概念。

3.关键:正确理解负数的意义和绝对值的意义。

课时划分

1.1 正数和负数 2课时

1.2 有理数 5课时

1.3 有理数的加减法 4课时

1.4 有理数的乘除法 5课时

1.5 有理数的乘方 4课时

第一章有理数(复习) 2课时

1.1正数和负数

第一课时

三维目标

一。知识与技能

能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。

二。过程与方法

借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

三。情感态度与价值观

培养学生积极思考,合作交流的意识和能力。

教学重、难点与关键

1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

2.难点:正确理解负数的概念。

3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

教具准备

投影仪。

教学过程

四、课堂引入

我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,为了表示没有物体、空位引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.

五、讲授新课

(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。

(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。

(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。

(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

用正负数表示具有相反意义的量

(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。

(6)、 请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义。

(7)、 你能再举一些用正负数表示数量的实际例子吗?

(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。

六、巩固练习

课本第3页,练习1、2、3、4题。

七、课堂小结

为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上-号,就是负数,但不能说:带正号的数是正数,带负号的数是负数,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上-号后所表示的数反而是正数了,另外应注意0既不是正数,也不是负数。

八、作业布置

1.课本第5页习题1.1复习巩固第1、2、3题。

九、板书设计

1.1正数和负数

第二课时

1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的.意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思

正数和负数的课件 篇7

一、感受相反方向的数量,经历负数产生的过程。

1、回忆小学学过那些数:自然数,分数

出示信息:看数的产生过程,现实中负数学习的必要。

2、引入负数的概念

3、总结正负数

(-+988等都叫正数。你会读吗?请你读给大家听。

注意“-”叫负号,“+”叫正号。

(2)读给你的同伴听。

(3)把你新认识的负数再写两个,读一读。

下面让我们走进正数和负数的世界,进一步了解它们。(板书课题)

二、借助实际生活情境的直观,丰富对正负数的认识。

1、负数有什么用?

用正数或负数表示下列数量。

(1向东走200米,用+200米表示;那么向西走200米元用 表示。

2.说说实际问题中负数的确定

(1)表示海拔高度

(2)解释温度中正负数的含义

(3)做练习三

3、怎样理解具有相反意义的量

三、理解0

1、0既不是正数也不是负数。0是正负数的分界。

2、0只表示没有吗?

⑴空罐中的金币数量;

⑵温度中的0℃;

⑶海平面的高度;

⑷标准水位;

⑸身高比较的基准;

⑹正数和负数的界点;

3、总结

0既不是正数,也不是负数;0是正数负数的分界。

0是整数,0是偶数,0是最小的自然数。

四、探究活动(出示课件)

西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?

若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。

负数表示这栋楼房每层的楼层号,则地面上的最高层表示为 ,地面下的最低层表示为 ,某人乘电梯从地下最低层升至地上6层,电梯一共运行了 层。

3、探究活动三:用正数和负数表示的相反意义的量,其中正确的是()。

A、2003年全球财富500强中对主要零售业的统计,大荣公司年收入为25320100万美元下列,利润为-195200万美元,该公司亏损额为195200万美元。

B、如果+9.6表示比海平面高9.6米,那么-19.2米表示比海平面低-19.2米。

C、收入30元与下降2米是具有相反意义的量。

D、一天早晨的'气温是-4℃,中午比早晨上升4℃,所以中午的气温是+4℃。

E、收入与支出是具有相反意义的量

F、如果收入增加18元记作+18元,那么-50元表示支出减少50元

5、探究活动四:如果用一个字母表示一个数,那a可能是什么样的数?一定是正数吗?

答:不一定,a可能是正数,可能是负数,也可能是0

五、探索与思考

1、例1:一个月内,小明体重增加-2kg,小华体重减少-1kg,小强体重无变化,写出他们这个月的体重增长值;

2、例2 -1小的整数如下列这样排列

第一列 第二列 第三列 第四列

-2 -3 -4 -5

-9 -8 -7 -6

-10 -11 -12 -13

-17 -16 -15 -14

... ... ... ...

在上述的这些数中,观察它们的规律,回答数-100将在哪一列.

3、例3

2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,

法国减少2.4%, 英国减少3.5%,

意大利增长0.2%, 中国增长7.5%.

写出这些国家2001年商品进出口总额的增长率.

思考 :

负”与“正”相对,增长-2就是减少2;增长-1,是什么意思?什么情况下增长是0?

六、 应用与提高

有一批食品罐头,标准质量为每听500g,现抽取10听样品进行检测,结果如下表。(单位:g)

质量 497 501 503 498 496 495 500 499 501 505

质量误差分别为:

如果在罐头的标签上注有:“质量:500g ”,则在所抽取的罐头中是否有不合格的?

七、课堂练习

1、下列说法中正确的个数是( )

⑴带正号的数是正数,带负号的数是负数

⑵任意一个正数,前面加上“-”号,就是一个负数

⑷大于0的数是正数

⑸字母a既是正数,也是负数

A.0 B.1 C.2. D.3

2.判 断

(1)0是整数( )

(2)自然数一定是整数( )

(3)0一定是正整数( )

(4)整数一定是自然数( )

3.说明下面这些话的意义:

①温度上升+3 ℃ ②温度下降+3 ℃

③收入+4.25元 ④支出—4.2元

4、“小明这次数学考试成绩下降-20分”这句话的意思 是什么?

5.(1)向东走+5m,-6m,0m表示的实际意义是什么呢?

(2)某水泥厂计划每月生产水泥1000t ,一月份实际生产了

950t ,二月份实际生产了1000t ,三月份实际生产了1100t ,用正数和

负数表示每月超额完成计划的吨数各是多少?

正数和负数的课件 篇8

1、在实际问题中,为便于记录、计算引入正、负数体会其引入情境;

2、理解正、负数表示一对具有相反意义的量,并会表示。

知识目标:

会用正、负数表示相反意义的量。

能力目标:

用正、负数表示实际生活中具有相反意义的量。

情感目标:

巩固一元一次方程解法,加强应用问题的训练,提高分析问题和解决问题能力。

1.篮球赛的组织者出售球票,需要付给售票处12%的酬金,如果组织者要在扣除酬金后,每张球票净得12元,按精确到0.1元的要求,球票票价应定为。

(A)13.4元(B)13.5元(C)13.6元(D)13.7元

2.一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为()。

(A)3200元(B)3429元(C)2667元(D)3168元

3.某商店将彩电按原价提高40%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电原价是()

(A)2150元(B)2200元(C)2250元(D)2300元

4.一个商店以每3盘16元的价格购进一批录音带,又从另外一处以每4盘21元的价格购进比前一批数量加倍的录音带。如果两种合在一起以每3盘k元的价格全部出售可得到所投资的20%的收益,则k值等于()

5.某城市有50万户居民,平均每户有两个水龙头,估计其中有1%的水龙头漏水。若每个漏水龙头1秒钟漏一滴水,10滴水约重1克,试问该城市一年因此而浪费多少吨水(一年按365天计算)。

(1)比0大的数叫___________,在___________前加上“-”号数叫负数;

(2)把下列各数写入相应集合里:

-10,6,―7,0,―2.25,―,10%,

正整数集合{…}负整数集合{ …}

正数集合{…}分数集合 { …}

负数集合{ …}

2、想一想:

例1、(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出这个月他们的体重增长值;

学习目标:1、整理学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

2、能区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展的一个重要原因是生活实际的.需要,激发学习兴趣。

一、自主预习与互动学习:

2、阅读材料:我们已经是七年级的学生了,我们的数学老师。身高1.75米,体重74千克,今年43岁。我们的班级有50个同学,其中男同学有27个,占全班总人数的54%……

问题1:刚才的介绍中出现了几个数?分别是什么?你能将这些数按小学学过的数的分类方法进行分类吗?

观察本节前面的几幅图中用到了什么数,思考讨论问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

问题5:你是怎样理解“正整数”“负整数,‘’正分数”和“负分数”的呢?请举例说明。

3、在同一问题中,分别用正数和负数表示的量具有意义;

4、(1)向东行进-50米,表示的实际意义是什么?

(2)某水泥厂计划每月生产水泥吨,一月份实际生产了1100吨,二月份实际生产了1350吨,用正数和负数表示每月超额完成计划的吨数各是多少?

转载请保留原文链接://www.djz525.com/a/5983412.html,并在标注文章来源。
上一篇 : 祝愿天真的古文诗句子128句
下一篇 : 酒店开业文案(集合200句)